Application of Covariate Shift Adaptation Techniques in Brain-Computer Interfaces
نویسندگان
چکیده
A phenomenon often found in session-to-session transfers of brain-computer interfaces (BCIs) is nonstationarity. It can be caused by fatigue and changing attention level of the user, differing electrode placements, varying impedances, among other reasons. Covariate shift adaptation is an effective method that can adapt to the testing sessions without the need for labeling the testing session data. The method was applied on a BCI Competition III dataset. Results showed that covariate shift adaptation compares favorably with methods used in the BCI competition in coping with nonstationarities. Specifically, bagging combined with covariate shift helped to increase stability, when applied to the competition dataset. An online experiment also proved the effectiveness of bagged-covariate shift method. Thus, it can be summarized that covariate shift adaptation is helpful to realize adaptive BCI systems.
منابع مشابه
Adaptive learning with covariate shift-detection for motor imagery-based brain-computer interface
A common assumption in traditional supervised learning is the similar probability distributionof data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalog...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملCovariate Shift Adaptation by Importance Weighted Cross Validation
A common assumption in supervised learning is that the input points in the training set follow the same probability distribution as the input points that will be given in the future test phase. However, this assumption is not satisfied, for example, when the outside of the training region is extrapolated. The situation where the training input points and test input points follow different distr...
متن کاملOnline Covariate Shift Detection based Adaptive Brain-Computer Interface to Trigger Hand Exoskeleton Feedback for Neuro-Rehabilitation
A major issue in electroencephalogram (EEG) based brain-computer interfaces (BCIs) is the intrinsic nonstationarities in the brain waves, which may degrade the performance of the classifier, while transitioning from calibration to feedback generation phase. The non-stationary nature of the EEG data may cause its input probability distribution to vary over time, which often appear as a covariate...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on bio-medical engineering
دوره 57 6 شماره
صفحات -
تاریخ انتشار 2010